Paving the Randomized Gauss-Seidel

نویسندگان

  • Wei Wu
  • Winston Ou
چکیده

The Randomized Gauss-Seidel Method (RGS) is an iterative algorithm that solves overdetermined systems of linear equations Ax = b. This paper studies an update on the RGS method, the Randomized Block Gauss-Seidel Method(RBGS). At each step, the algorithm greedily minimizes the objective function L(x) = kAx bk2 with respect to a subset of coordinates. This paper describes a Randomized Block GaussSeidel Method (RBGS) which uses a randomized control method to choose a subset of columns of A at each step. This algorithm is the first block RGS method with an expected linear convergence rate which can be described by the properties of the matrix A and its column submatrices. The analysis demonstrates that RBGS improves RGS more when given appropriate column-paving of the matrix, a partition of the columns into well-conditioned blocks. The main result yields a RBGS method that is more e cient than the simple RGS method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence Properties of the Randomized Extended Gauss-Seidel and Kaczmarz Methods

The Kaczmarz and Gauss-Seidel methods both solve a linear system Xβ = y by iteratively refining the solution estimate. Recent interest in these methods has been sparked by a proof of Strohmer and Vershynin which shows the randomized Kaczmarz method converges linearly in expectation to the solution. Lewis and Leventhal then proved a similar result for the randomized Gauss-Seidel algorithm. Howev...

متن کامل

Rows versus Columns: Randomized Kaczmarz or Gauss-Seidel for Ridge Regression

The Kaczmarz and Gauss-Seidel methods aim to solve a linear m × n system Xβ = y by iteratively refining the solution estimate; the former uses random rows of X to update β given the corresponding equations and the latter uses random columns of X to update corresponding coordinates in β. Interest in these methods was recently revitalized by a proof of Strohmer and Vershynin showing linear conver...

متن کامل

Comparison results on the preconditioned mixed-type splitting iterative method for M-matrix linear systems

Consider the linear system Ax=b where the coefficient matrix A is an M-matrix. In the present work, it is proved that the rate of convergence of the Gauss-Seidel method is faster than the mixed-type splitting and AOR (SOR) iterative methods for solving M-matrix linear systems. Furthermore, we improve the rate of convergence of the mixed-type splitting iterative method by applying a preconditio...

متن کامل

Application of the Central-Difference with Half- Sweep Gauss-Seidel Method for Solving First Order Linear Fredholm Integro-Differential Equations

The objective of this paper is to analyse the application of the Half-Sweep Gauss-Seidel (HSGS) method by using the Half-sweep approximation equation based on central difference (CD) and repeated trapezoidal (RT) formulas to solve linear fredholm integro-differential equations of first order. The formulation and implementation of the Full-Sweep Gauss-Seidel (FSGS) and HalfSweep Gauss-Seidel (HS...

متن کامل

Self-adaptive Extrapolated Gauss-Seidel Iterative Methods

In this paper, we consider a self-adaptive extrapolated Gauss-Seidel method for solving the Hermitian positive definite linear systems. Based on optimization models, self-adaptive optimal factor is given. Moreover, we prove the convergence of the self-adaptive extrapolated Gauss-Seidel method without any constraints on optimal factor. Finally, the numerical examples show that the self-adaptive ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017